【題目】已知三棱柱
,平面
截此三棱柱,分別與
,
,
,
交于點(diǎn)
,
,
,
,且直線(xiàn)
平面
.有下列三個(gè)命題:①四邊形
是平行四邊形;②平面
平面
;③若三棱柱
是直棱柱,則平面
平面
.其中正確的命題為( )
A. ①② B. ①③ C. ①②③ D. ②③
【答案】B
【解析】分析:在①中,由
,且
,即可證明四邊形
是平行四邊形;在②中,由直線(xiàn)
與
的位置關(guān)系可判斷平面
與平面
平行或相交;在③中,若三棱柱
是直棱柱,則
平面
,結(jié)合①,即可得證.
詳解:在三棱柱
中,平面
截此三棱柱,分別與
,
,
,
交于點(diǎn)
,
,
,
,且直線(xiàn)
平面
,則
,且
,所以四邊形
是平行四邊形,故①正確;
∵
與
不一定平行
∴平面
與平面
平行或相交,故②錯(cuò)誤;
若三棱柱
是直棱柱,則
平面
.
∴
平面![]()
又∵
平面![]()
∴平面
平面
,故③正確.
故選B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
與直線(xiàn)
,動(dòng)直線(xiàn)
過(guò)定點(diǎn)
.
![]()
(1)若直線(xiàn)
與圓
相切,求直線(xiàn)
的方程;
(2)若直線(xiàn)
與圓
相交于
兩點(diǎn),點(diǎn)
是
的中點(diǎn),直線(xiàn)
與直線(xiàn)
相交于點(diǎn)
. 探索
是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)青年報(bào)》2015年5月14日?qǐng)?bào)道:“伴隨著網(wǎng)絡(luò)技術(shù)的蓬勃發(fā)展,國(guó)內(nèi)電子商務(wù)獲得了爆炸式的增長(zhǎng),2014年網(wǎng)上零售額達(dá)到了27898億元,占社會(huì)消費(fèi)品零售總額的10%,也就是說(shuō),人們?nèi)粘OM(fèi)中10%是通過(guò)網(wǎng)購(gòu),而且還以年30%,40%的速度增長(zhǎng)."假設(shè)2014-2020年網(wǎng)上零售額每年的增長(zhǎng)率均為35%,試算出2015-2020年每年的網(wǎng)上零售額(精確到1億元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在促銷(xiāo)期間規(guī)定:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的
出售,當(dāng)顧客在商場(chǎng)內(nèi)消費(fèi)一定金額后,按如下方案獲得相應(yīng)金額的獎(jiǎng)券:
消費(fèi)金額(元)的范圍 |
|
|
|
| … |
獲得獎(jiǎng)券的金額(元) | 30 | 60 | 100 | 130 | … |
根據(jù)上述促銷(xiāo)方法,顧客在該商場(chǎng)購(gòu)物可以獲得雙重優(yōu)惠,例如:購(gòu)買(mǎi)標(biāo)價(jià)為400元的商品,則消費(fèi)金額為320元,獲得的優(yōu)惠額為:
元,設(shè)購(gòu)買(mǎi)商品得到的優(yōu)惠率=(購(gòu)買(mǎi)商品獲得的優(yōu)惠額)/(商品標(biāo)價(jià)),試問(wèn):
(1)若購(gòu)買(mǎi)一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)對(duì)于標(biāo)價(jià)在
(元)內(nèi)的商品,顧客購(gòu)買(mǎi)標(biāo)價(jià)為多少元的商品,可得到不小于
的優(yōu)惠率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線(xiàn)
的極坐標(biāo)方程為
,
為曲線(xiàn)
上的動(dòng)點(diǎn),
與
軸、
軸的正半軸分別交于
,
兩點(diǎn).
(1)求線(xiàn)段
中點(diǎn)
的軌跡的參數(shù)方程;
(2)若
是(1)中點(diǎn)
的軌跡上的動(dòng)點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形
為正方形,四邊形
為直角梯形,且
,
,平面
平面
,
.
![]()
(
)求證:
平面
.
(
)若二面角
為直二面角,
(i)求直線(xiàn)
與平面
所成角的大小.
(ii)棱
上是否存在點(diǎn)
,使得
平面
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形
是正方形,
平面
,
//
,
,
,
為
的中點(diǎn).
![]()
(1)求證:
;
(2)求證:
//平面
;
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△
中,
,
分別為
,
的中點(diǎn),
為
的中點(diǎn),
,
.將△
沿
折起到△
的位置,使得平面
平面
,如圖2.
(Ⅰ)求證:
;
(Ⅱ)求直線(xiàn)
和平面
所成角的正弦值;
(Ⅲ)線(xiàn)段
上是否存在點(diǎn)
,使得直線(xiàn)
和
所成角的余弦值為
?若存在,求出
的值;若不存在,說(shuō)明理由.
![]()
圖1 圖2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,為了保護(hù)環(huán)境,實(shí)現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長(zhǎng)方形ABCD處規(guī)劃一塊長(zhǎng)方形地面HPGC,建造住宅小區(qū)公園,但不能越過(guò)文物保護(hù)區(qū)三角形AEF的邊線(xiàn)EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問(wèn)如何設(shè)計(jì)才能使公園占地面積最大,求出最大面積.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com