求實數(shù)

的取值組成的集合

,使當

時,“

”為真,“

”為假.
其中

方程

有兩個不相等的負根;

方程

無實數(shù)根.
試題分析:由“

”為真,“

”為假可知.p,q命題其中一真一假.分別求出p,q為真命題的m的取值范圍.即可求得結論.其中p是求得兩個不相等的負根.由于兩根之積為是正的,所以只需要兩根之和為負即可.所以需要m<0這個條件.
試題解析:


5 分


即

10 分
①

②


13分
綜上所述:

14分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
命題

函數(shù)

既有極大值又有極小值;
命題

直線

與圓

有公共點.
若命題“

或

”為真,且命題“

且

”為假,試求實數(shù)

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知命題

:任意

,

,命題

:函數(shù)

在

上單調(diào)遞減.
(1)若命題

為真命題,求實數(shù)

的取值范圍;
(2)若

和

均為真命題,求實數(shù)

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
下面有四個命題:
①函數(shù)

的最小正周期是

;
②函數(shù)

的最大值是

;
③把函數(shù)

的圖象向右平移

得

的圖象;
④函數(shù)

在

上是減函數(shù).
其中真命題的序號是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
對于以下判斷:
(1)命題“已知

”,若x

2或y

3,則x+y

5”是真命題.
(2)設f(x)的導函數(shù)為f'(x),若f'(x
0)=0,則x
0是函數(shù)f(x)的極值點.
(3)命題“

,e
x﹥0”的否定是:“

,e
x﹥0”.
(4)對于函數(shù)f(x),g(x),f(x)

g(x)恒成立的一個充分不必要的條件是f(x)
min
g(x)
max.
其中正確判斷的個數(shù)是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
命題

的否定

為
__________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
給出定義:若

(其中

為整數(shù)),則

叫做離實數(shù)

最近的整數(shù),記作

,即

.在此基礎上給出下列關于函數(shù)

的四個命題:
①

的定義域是

,值域是

;②點

是

的圖像的對稱中心,其中

;③函數(shù)

的最小正周期為1;④函數(shù)

在

上是增函數(shù).則上述命題中真命題的序號是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設命題
p:函數(shù)
y=sin 2
x的最小正周期為

;命題
q:函數(shù)
y=cos
x的圖象關于直線
x=

對稱,則下列判斷正確的是( ).
| A.p為真 | B.綈q為假 |
| C.p∧q為假 | D.p∨q為真 |
查看答案和解析>>