【題目】已知數(shù)列
中,
,前
項(xiàng)和為
,若對(duì)任意的
,均有
(
是常數(shù),且
)成立,則稱數(shù)列
為“
數(shù)列”.
(1)若數(shù)列
為“
數(shù)列”,求數(shù)列
的前
項(xiàng)和
;
(2)若數(shù)列
為“
數(shù)列”,且
為整數(shù),試問:是否存在數(shù)列
,使得
對(duì)任意
,
成立?如果存在,求出這樣數(shù)列
的
的所有可能值,如果不存在,請(qǐng)說明理由.
【答案】(1)
(2)存在,![]()
【解析】
由數(shù)列
為“
數(shù)列”可得,
,
,兩式相減得
,又![]()
,利用等比數(shù)列通項(xiàng)公式即可求出
,進(jìn)而求出
;
由題意得,
,
,兩式相減得,
,
據(jù)此可得,當(dāng)
時(shí),
,進(jìn)而可得
,即數(shù)列
為常數(shù)列,進(jìn)而可得
,結(jié)合
,得到關(guān)于
的不等式,再由
時(shí)
,且
為整數(shù)即可求出符合題意的
的所有值.
因?yàn)閿?shù)列
為“
數(shù)列”,
所以
,故
,
兩式相減得
,
在
中令
,則可得
,故![]()
所以
,
所以數(shù)列
是以
為首項(xiàng),以
為公比的等比數(shù)列,
所以
,因?yàn)?/span>
,
所以
.
(2)由題意得
,故
,
兩式相減得
所以,當(dāng)
時(shí),![]()
又因?yàn)?/span>![]()
所以當(dāng)
時(shí),![]()
所以
成立,
所以當(dāng)
時(shí),數(shù)列
是常數(shù)列,
所以
因?yàn)楫?dāng)
時(shí),
成立,
所以
,
所以![]()
在
中令
,
因?yàn)?/span>
,所以可得
,
所以
,
由
時(shí)
,且
為整數(shù),
可得
,
把
分別代入不等式![]()
可得,
,
所以存在數(shù)列
符合題意,
的所有值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)
、
,直線
、
相交于點(diǎn)
,且它們的斜率之積為
,記動(dòng)點(diǎn)
的軌跡為曲線
.
(1)求曲線
的方程;
(2)已知定點(diǎn)
,
,過點(diǎn)
的直線
與曲線
交于
、
兩點(diǎn) ,則直線
與
斜率之積是否為定值,若是求出定值;若不是請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為
萬元,每生產(chǎn)
千件需另投入
萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝
千件并全部銷售完,每千件的銷售收入為
萬元,且
.
(1)寫出年利潤(rùn)
(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
平面直角坐標(biāo)系xOy中,曲線C:
.直線l經(jīng)過點(diǎn)P(m,0),且傾斜角為
.O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點(diǎn),且|PA|·|PB|=1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市正在進(jìn)行創(chuàng)建全國(guó)文明城市的復(fù)驗(yàn)工作,為了解市民對(duì)“創(chuàng)建全國(guó)文明城市”的知識(shí)知曉程度,某權(quán)威調(diào)查機(jī)構(gòu)對(duì)市民進(jìn)行隨機(jī)調(diào)查,并對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),共分為優(yōu)秀和一般兩類,先從結(jié)果中隨機(jī)抽取100份,統(tǒng)計(jì)得出如下
列聯(lián)表:
優(yōu)秀 | 一般 | 總計(jì) | |
男 | 25 | 25 | 50 |
女 | 30 | 20 | 50 |
總計(jì) | 55 | 45 | 100 |
(1)根據(jù)上述列聯(lián)表,是否有
的把握認(rèn)為“創(chuàng)城知識(shí)的知曉程度是否為優(yōu)秀與性別有關(guān)”?
(2)現(xiàn)從調(diào)查結(jié)果為一般的市民中,按分層抽樣的方法從中抽取9人,然后再從這9人中隨機(jī)抽取3人,求這三位市民中男女都有的概率;
(3)以樣本估計(jì)總體,視樣本頻率為概率,從全市市民中隨機(jī)抽取10人,用
表示這10人中優(yōu)秀的人數(shù),求隨機(jī)變量
的期望和方差.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)矩陣M=
(其中a>0,b>0).
(1)若a=2,b=3,求矩陣M的逆矩陣M-1;
(2)若曲線C:x2+y2=1在矩陣M所對(duì)應(yīng)的線性變換作用下得到曲線C′:
+y2=1,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“互聯(lián)網(wǎng)+”時(shí)代的今天,移動(dòng)互聯(lián)快速發(fā)展,智能手機(jī)(Smartphone)技術(shù)不斷成熟,尤其在5G領(lǐng)域,華為更以
件專利數(shù)排名世界第一,打破了以往由美、英、日壟斷的前三位置,再次榮耀世界,而華為的價(jià)格卻不斷下降,遠(yuǎn)低于蘋果;智能手機(jī)成為了生活中必不可少的工具,學(xué)生是對(duì)新事物和新潮流反應(yīng)最快的一個(gè)群體之一,越來越多的學(xué)生在學(xué)校里使用手機(jī),為了解手機(jī)在學(xué)生中的使用情況,對(duì)某學(xué)校高二年級(jí)
名同學(xué)使用手機(jī)的情況進(jìn)行調(diào)查,針對(duì)調(diào)查中獲得的“每天平均使用手機(jī)進(jìn)行娛樂活動(dòng)的時(shí)間”進(jìn)行分組整理得到如下的數(shù)據(jù):
使用時(shí)間(小時(shí)) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
所占比例 | 4% | 10% | 31% | 16% |
| 12% | 2% |
(1)求表中
的值;
(2)從該學(xué)校隨機(jī)選取一名同學(xué),能否根據(jù)題目中所給信息估計(jì)出這名學(xué)生每天平均使用手機(jī)進(jìn)行娛樂活動(dòng)小于
小時(shí)的概率?若能,請(qǐng)算出這個(gè)概率;若不能,請(qǐng)說明理由;
(3)若從使用手機(jī)
小時(shí)和
小時(shí)的兩組中任取兩人,調(diào)查問卷,看看他們對(duì)使用手機(jī)進(jìn)行娛樂活動(dòng)的看法,求這
人都使用
小時(shí)的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com