【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是![]()
(Ⅰ)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線
與曲線
相交于
兩點,當(dāng)
時,求
的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的離心率為
,長軸的左、右端點分別為
,
.
![]()
(1)求橢圓C的方程;
(2)設(shè)直線
與橢圓C交于P,Q兩點,直線
,
交于S,試問:當(dāng)m變化時,點S是否恒在一條定直線上?若是,請寫出這條直線的方程,并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的一個焦點為
,點
在
上.
(1)求橢圓
的方程;
(2)若直線
:
與橢圓
相交于
,
兩點,問
軸上是否存在點
,使得
是以
為直角頂點的等腰直角三角形?若存在,求點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的短軸長為
,且橢圓的一個焦點在圓
上.
(1)求橢圓的方程;
(2)已知橢圓的焦距小于
,過橢圓的左焦點
的直線
與橢圓相交于
兩點,若
,求![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形
和矩形
所在的平面互相垂直,
,
,
是線段
的中點.
![]()
(1)求證:
平面
;
(2)若
,求二面角
的大;
(3)若線段
上總存在一點
,使得
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是![]()
(Ⅰ)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線
與曲線
相交于
兩點,當(dāng)
時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
的左、右焦點分別為
,
,過點
的直線
與橢圓交于點
,
,
的周長為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若
.①當(dāng)
時,求直線
的方程;
②證明
是定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,∠DAB=60°.
(1)求證:直線AM∥平面PNC;
(2)求二面角D﹣PC﹣N的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程是
(
為參數(shù)),把曲線
橫坐標(biāo)縮短為原來的
,縱坐標(biāo)縮短為原來的一半,得到曲線
,直線
的普通方程是
,以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系;
(1)求直線
的極坐標(biāo)方程和曲線
的普通方程;
(2)記射線
與
交于點
,與
交于點
,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com