【題目】云南省2016年高中數學學業水平考試的原始成績采用百分制,發布成績使用等級制,各登記劃分標準為:85分及以上,記為A等,分數在[70,85)內,記為B等,分數在[60,70)內,記為C等,60分以下,記為D等,同時認定等級分別為A,B,C都為合格,等級為D為不合格. 已知甲、乙兩所學校學生的原始成績均分布在[50,100]內,為了比較兩校學生的成績,分別抽取50名學生的原始成績作為樣本進行統計,按照[50,60),[60,70),[70,80),[80,90),[90,100]分別作出甲校如圖1所示樣本頻率分布直方圖,乙校如圖2所示樣本中等級為C、D的所有數據莖葉圖.![]()
(1)求圖中x的值,并根據樣本數據比較甲乙兩校的合格率;
(2)在選取的樣本中,從甲、乙兩校C等級的學生中隨機抽取3名學生進行調研,用X表示所抽取的3名學生中甲校的學生人數,求隨機變量X的分布列和數學期望.
【答案】
(1)解:由頻率分布直方圖可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.
甲校的合格率P1=(1﹣0.004)×10=0.96=96%,
乙校的合格率P2=
=96%.
可得:甲乙兩校的合格率相同,都為96%.
(2)解:甲乙兩校的C等級的學生數分別為:0.012×10×50=6,4人.
X=0,1,2,3.
則P(X=k)=
,P(X=0)=
=
,P(X=1)=
=
,P(X=2)=
=
,P(X=3)=
=
.
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
E(X)=0+1×
+2×
+3×
=
.
【解析】(1)利用頻率分布直方圖的性質可得x,進而定點甲校的合格率.由莖葉圖可得乙校的合格率.(2)甲乙兩校的C等級的學生數分別為:0.012×10×50=6,4人.X=0,1,2,3.利用P(X=k)=
,即可得出.
【考點精析】認真審題,首先需要了解莖葉圖(莖葉圖又稱“枝葉圖”,它的思路是將數組中的數按位數進行比較,將數的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數,每個數具體是多少),還要掌握離散型隨機變量及其分布列(在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】已知曲線f(x)=
ax3﹣blnx在x=1處的切線方程為y=﹣2x+
(Ⅰ)求f(x)的極值;
(Ⅱ)證明:x>0時,
<
(e為自然對數的底數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,側面PAD是邊長為2的等邊三角形且垂直于底
,
是
的中點。
(1)證明:直線
平面
;
(2)點
在棱
上,且直線
與底面
所成角為
,求二面角
的余弦值。
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直三棱柱ABC﹣A1BlC1中,平面α與棱AB,AC,A1C1 , A1B1分別交于點E,F,G,H,且直線AA1∥平面α.有下列三個命題:①四邊形EFGH是平行四邊形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正確的命題有( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國南北朝時代的數學家祖暅提出體積的計算原理(祖暅原理):“冪勢既同,則積不容 異”.“勢’’即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處截得兩幾何體的截面積恒等,那么這兩個幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標系中,圖1是一個形狀不規則的封閉圖形,圖2是一個上底為l的梯形,且當實數t取[0,3]上的任意值時,直線y=t被圖l和圖2所截得的兩線段長始終相等,則圖l的面積為 . ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,設
為不同的兩點,直線
的方程為
,設
,其中
均為實數.下列四個說法中:
①存在實數
,使點
在直線
上;
②若
,則過
兩點的直線與直線
重合;
③若
,則直線
經過線段
的中點;
④若
,則點
在直線
的同側,且直線
與線段
的延長線相交.
所有結論正確的說法的序號是______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)與y=F(x)的圖象關于y軸對稱,當函數y=f(x)和y=F(x)在區間[a,b]同時遞增或同時遞減時,把區間[a,b]叫做函數y=f(x)的“不動區間”.若區間[1,2]為函數f(x)=|2x﹣t|的“不動區間”,則實數t的取值范圍是( )
A.(0,2]
B.[
,+∞)
C.[
,2]
D.[
,2]∪[4,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com