【題目】已知F1 , F2分別為雙曲線
﹣
=1(a>0,b>0)的左右焦點,如果雙曲線上存在一點P,使得F2關于直線PF1的對稱點恰在y軸上,則該雙曲線的離心率e的取值范圍為( )
A.e> ![]()
B.1<e< ![]()
C.e> ![]()
D.1<e< ![]()
科目:高中數學 來源: 題型:
【題目】在等腰直角三角形ABC中,AB=AC=4,點P是邊AB邊上異于AB的一點,光線從點P出發,經BC,CA反射后又回到點P(如圖),若光線QR經過△ABC的重心,則AP等于( )![]()
A.2
B.1
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數
,若在定義域內存在實數
,滿足
,則稱
為“
類函數”.
(1)已知函數
,試判斷
是否為“
類函數”?并說明理由;
(2)設
是定義在
上的“
類函數”,求是實數
的最小值;
(3)若
為其定義域上的“
類函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0),直線y=x+
與以原點為圓心,以橢圓C的短半軸為半徑的圓相切,F1 , F2為其左右焦點,P為橢圓C上的任意一點,△F1PF2的重心為G,內心為I,且IG∥F1F2 .
(1)求橢圓C的方程;
(2)已知A為橢圓C上的左頂點,直線∫過右焦點F2與橢圓C交于M,N兩點,若AM,AN的斜率k1 , k2滿足k1+
k2=﹣
,求直線MN的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知M為△ABC的中線AD的中點,過點M的直線分別交兩邊AB、AC于點P、Q,設
=x
,
,記y=f(x).![]()
(1)求函數y=f(x)的表達式;
(2)設g(x)=x3+3a2x+2a,x∈[0,1].若對任意x1∈[
,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】所謂正三棱錐,指的是底面為正三角形,頂點在底面上的射影為底面三角形中心的三棱錐,在正三棱錐S﹣ABC中,M是SC的中點,且AM⊥SB,底面邊長AB=2
,則正三棱錐S﹣ABC的體積為 , 其外接球的表面積為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據氣象部門預報,在距離碼頭A南偏東45°方向400千米B處的臺風中心正以20千米每小時的速度向北偏東15°方向沿直線移動,以臺風中心為圓心,距臺風中心100
千米以內的地區都將受到臺風影響.據以上預報估計,從現在起多長時間后,碼頭A將受到臺風的影響?影響時間大約有多長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高三期中考試的學生中抽出50名學生,并統計了他們的數學成績(成績均為整數且滿分為100分),數學成績分組及樣本頻率分布表如下:
分組 | 頻數 | 頻率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15 | ② |
[80,90) | ① | 0.24 |
[90,100] | 4 | 0.08 |
合計 | ③ | ④ |
(1)請把給出的樣本頻率分布表中的空格都填上;
(2)為了幫助成績差的學生提高數學成績,學校決定成立“二幫一”小組,即從成績[90,100]中選兩位同學,共同幫助[40,50)中的某一位同學,已知甲同學的成績為42分,乙同學的成績為95分,求甲、乙兩同學恰好被安排在同一小組的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com