13. 如圖1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直線MN經過點A,BD⊥MN于點D,CE⊥MN于點E.
(1)試判斷線段DE,BD,CE之間的數量關系,并說明理由;
(2)當直線MN運動到如圖2所示位置時,其余條件不變,判斷線段DE,BD,CE之間的數量關系,并說明理由.
答案:(1) $ DE = BD + CE $,理由如下:
$\because BD\perp MN$,$CE\perp MN$,
$\therefore\angle BDA=\angle AEC = 90^{\circ}$,
$\therefore\angle BAD+\angle ABD = 90^{\circ}$,
又$\because\angle BAC = 90^{\circ}$,
$\therefore\angle BAD+\angle CAE = 90^{\circ}$,
$\therefore\angle ABD=\angle CAE$,
在$\triangle BAD$和$\triangle ACE$中
$\begin{cases}\angle BDA=\angle AEC = 90^{\circ}\\\angle ABD=\angle CAE\\AB = CA\end{cases}$
$\therefore\triangle BAD\cong\triangle ACE(AAS)$,
$\therefore BD = AE$,$AD = CE$,
又$DE = AE + AD$,
$\therefore DE = BD + CE$;
(2) $ DE = CE - BD $,
同(1)可得$\triangle BAD\cong\triangle ACE$,
故$BD = AE$,$AD = CE$,
又$DE = AD - AE$,
$\therefore DE = CE - BD$。