【題目】已知點
,拋物線
與
軸從左到右的交點為
,
.
![]()
(1)若拋物線
經過點
,求拋物線
的解析式和頂點坐標;
(2)當
時,求
的值;
(3)直線
經過點
,與
軸交于點
,
①求點
的坐標;
②若線段
與拋物線
有唯一公共點,直接寫出正整數
的值.
【答案】(1)
,
;(2)
或
;(3)①
,②
和![]()
【解析】
(1)由拋物線
經過
,把點M代入即可求出
,拋物線
的解析式即求出;把拋物線解析式化為頂點式,即可得頂點點坐標;
(2)方法一:利用拋物與
軸的交點坐標關于對稱軸對稱的特點求解,設
,則
,
,由拋物線對稱軸為直線:
,①當
,則
可得
,求出
,此時
代入拋物線可求出
;②當
,則
,此時可出
,此時
代入拋物線解析式得
;綜上所述即為
的值;
方法二:利用物線
與
軸有兩個交點,用判別式得出
的取值范圍
,令
,用求根公式表示出方程的解,當
時,可得兩個解的關系
,解之,即可得
的值;
(3)①把
代入直線
,即可得b的值,寫出直線解析式,令
,即可求與
軸交于點的縱坐標,即求得
點坐標;
②由線段
與拋物線
有唯一公共點,聯立直線和拋物線的方程,可解得此時符合題意的
;當拋物線經過點M時,解得c=2 ,此時拋物線與線段MN有2個公共點,與題意不符;當拋物線往下平移到經過點N時,解得c=-1 ,此時拋物線與線段MN只有交點N,當-1≤c<2時,拋物線與線段MN只有-個公共點,而此時滿足條件的正整數c的值為1,綜上所述,即可得符合條件的
的值.
解:(1)
拋物線
經過
,
,
解得:
.
,
,
頂點為
,
(2)方法一:
設
,則
,
,
①若
,則
,
拋物線對稱軸為直線:
,點
、
關于對稱軸對稱,
,即
,
解得:
,
代入拋物線解析式得:
,
解得:
;
②若
,則
,
,
解得:
,
代入拋物線解析式得:
,
解得:
;
綜上所述
的值為
或
.
方法二:
(2)
拋物線
與
軸有兩個交點,
,
解得
,
令
,
解得
,
點
,
點
,
當
時,
,
或
,解得
或
.
(3)①
直線
經過點
,
,
解得:
,
直線解析式為
,
當
時,
,
點
坐標為
.
②滿足條件的正整數
的值為
和
;
理由如下:
![]()
當線段
與拋物線
只有一個公共點時,
,
∴
,
△
,
所以
,
此時方程的解為
,
∴此時交點在線段
上,滿足題意段
與拋物線
有唯一公共點;
當拋物線經過點M時,解得c=2 ,此時拋物線與線段MN有2個公共點,與題意不符;
當拋物線往下平移到經過點N時,解得c=-1 ,此時拋物線與線段MN只有交點N,
∴當-1≤c<2時,拋物線與線段MN只有-個公共點
∴此時滿足條件的正整數c的值為1;
綜上所述,滿足條件的正整數c的值為1或3.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a<0)與x軸交于A(﹣2,0)、B(4,0)兩點,與y軸交于點C,且OC=2OA.
(1)試求拋物線的解析式;
(2)直線y=kx+1(k>0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=
,試求m的最大值及此時點P的坐標;
(3)在(2)的條件下,點Q是x軸上的一個動點,點N是坐標平面內的一點,是否存在這樣的點Q、N,使得以P、D、Q、N四點組成的四邊形是矩形?如果存在,請求出點N的坐標;如果不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰
的
邊與正方形
的
邊重合,
.
從如圖所示位置水平向右勻速運動,直到點
落在邊
上.設
,運動過程中
與正方形
的重合部分面積為
,則能反映
與
的函數關系的圖象是( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b(k≠0)的圖象與反比例函數y=
(m≠0,x>0)的圖象在第一象限內交于點A,B,且該一次函數的圖象與y軸正半軸交于點C,過A,B分別作y軸的垂線,垂足分別為D,E.已知A(1,4),
=
.
![]()
(1)求m的值和一次函數的解析式;
(2)若點M為反比例函數圖象在A,B之間的動點,作射線OM交直線AB于點N,當MN長度最大時,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,直徑AB=4,直線EF經過點C,AD⊥EF于點D,∠ACD=∠B.
(1)求證:EF是⊙O的切線;
(2)若AD=1,求BC的長;
(3)在(2)的條件下,求圖中陰影部分的面積.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數
與一次函數
的圖象交于
兩點,點
,
軸于點
,
,
的面積是3,一次函數
與
軸,
軸分別交于點
.
(1)求反比例函數與一次函數的表達式;
(2)求
的面積.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com