【題目】已知:如圖,AD⊥BC,垂足為D,AD=BD,點E在AD上,∠CED=45°,
(1)請寫出圖中相等的線段: .(不包括已知條件中的相等線段)
(2)猜想BE與AC的位置關系,并說明理由.
![]()
【答案】(1)DE=DC,BE=AC;(2)互相垂直,理由見解析
【解析】
(1)根據題目中的條件和圖形,可以證明△BDE≌△ADC,從而可以得到對應邊相等,本題得以解決;
(2)根據△BDE≌△ADC和直角三角形的性質,可以得到BE與AC的位置關系.
(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∵∠CED=45°,
∴∠ECD=45°,
∴∠ECD=∠CED,
∴DE=DC,
在△BDE和△ADC中
∴△BDE≌△ADC(SAS)
∴BE=AC,
由上可得,圖中相等的線段:DE=DC,BE=AC,
故答案為:DE=DC,BE=AC;
(2)BE與AC的位置關系是互相垂直,
![]()
理由:由(1)知,△BDE≌△ADC,
則∠DBE=∠DAC,
∵∠EDB=90°,
∴∠DBE+∠DEB=90°,
∵∠DEB=∠AEF,
∴∠DBE+∠AEF=90°,
∴∠DAC+∠AEF=90°,
∴∠AFE=90°,
∴BF⊥AC,
即BE與AC的位置關系是互相垂直.
科目:初中數學 來源: 題型:
【題目】已知點
在拋物線
:
(
,
均為常數且
)上,
交
軸于點
,連接
.
![]()
(1)用
表示
,并求
的對稱軸;
(2)當
經過點(4,-7)時,求此時
的表達式及其頂點坐標;
(3)橫,縱坐標都是整數的點叫做整點如圖,當
時,若
在點
,
之間的部分與線段
所圍成的區域內(不含邊界)恰有5個整點,求
的取值范圍:
(4)點
,
是
上的兩點,若
,當
時,均有
,直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣
(其中m>0)與x軸分別交于A,B兩點(A在B的右側),與y軸交于點c.
(1)求△AOC的周長,(用含m的代數式表示)
(2)若點P為直線AC上的一點,且點P在第二象限,滿足OP2=PCPA,求tan∠APO的值及用含m的代數式表示點P的坐標;
(3)在(2)的情況下,線段OP與拋物線相交于點Q,若點Q恰好為OP的中點,此時對于在拋物線上且介于點C與拋物線頂點之間(含點C與頂點)的任意一點M(x0,y0)總能使不等式n≤
及不等式2n﹣
恒成立,求n的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線
分別與
軸、
軸相交于點B、C,經過點B、C的拋物線
與
軸的另一個交點為A.
(1)求出拋物線表達式,并求出點A坐標;
(2)已知點D在拋物線上,且橫坐標為3,求出△BCD的面積;
(3)點P是直線BC上方的拋物線上一動點,過點P作PQ垂直于
軸,垂足為Q.是否存在點P,使得以點A、P、Q為頂點的三角形與△BOC相似?若存在,請求出點P的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某建筑物
上掛著“巴山渝水,魅力重慶”的宣傳條幅
,王同學利用測傾器在斜坡的底部
處測得條幅底部
的仰角為60°,沿斜坡AB走到B處測得條幅頂部C的仰角為50°.已知斜坡
的坡度
米,
米(點
在同平面內,
,測傾器的高度忽略不計),則條幅
的長度約為(參考數據:![]()
)
![]()
A.12.5米B.12.8米C.13.1米D.13.4米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在初中階段的函數學習中,我們經歷了“確定函數的表達式——利用函數圖象研究其性質——應用函數解決問題”的學習過程.在畫函數圖象時,我們可以通過描點或平移的方法畫出一個函數的大致圖象,結合上面經歷的學習過程,現在來解決下面問題:
在函數
中,當
時,
;當
時,
.
![]()
(1)求這個函數的表達式;
(2)在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數的圖象,并寫出這個函數的一條性質;
(3)已知函數
的圖象如圖所示,結合你所畫的函數圖象,直接寫出不等式
的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,AB⊥BC于點B,底座BC=1.3米,底座BC與支架AC所成的角∠ACB=60°,點H在支架AF上,籃板底部支架EH∥BC.EF⊥EH于點E,已知AH=
米,HF=
米,HE=1米.
(1)求籃板底部支架HE與支架AF所成的∠FHE的度數.
(2)求籃板底部點E到地面的距離,(精確到0.01米)(參考數據:
≈1.41,
≈1.73)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進甲乙兩種商品,甲的進貨單價比乙的進貨單價高20元,已知20個甲商品的進貨總價與25個乙商品的進貨總價相同.
(1)求甲、乙每個商品的進貨單價;
(2)若甲、乙兩種商品共進貨100件,要求兩種商品的進貨總價不高于9000元,同時甲商品按進價提高10%后的價格銷售,乙商品按進價提高25%后的價格銷售,兩種商品全部售完后的銷售總額不低于10480元,問有哪幾種進貨方案?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com