【題目】關于x的一元二次方程x2+3x+m-1=0的兩個實數根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AB⊥BD,sinA=
,將ABCD放置在平面直角坐標系中,且AD⊥x軸,點D的橫坐標為1,點C的縱坐標為3,恰有一條雙曲線y=
(k>0)同時經過B、D兩點,則點B的坐標是_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是∠AOB內任意一點,∠AOB=30°,OP=8,點M和點N分別是射線OA和射線OB上的動點,則△PMN周長的最小值為( )
![]()
A. 5B. 6C. 8D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線l:y=
x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=
x2+bx+c經過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;
(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的圖象如圖所示,下列結論:①9a﹣3b+c=0;②4a﹣2b+c>0;③方程ax2+bx+c﹣4=0有兩個相等的實數根;④方程a(x﹣1)2+b(x﹣1)+c=0的兩根是x1=﹣2,x2=2.其中正確結論的個數是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】規定:四條邊對應相等,四個角對應相等的兩個四邊形全等.某學習小組在研究后發現判定兩個四邊形全等需要五組對應條件,于是把五組條件進行分類研究,并且針對二條邊和三個角對應相等類型進行研究提出以下幾種可能:
![]()
①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;
②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;
③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;
④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.
其中能判定四邊形ABCD和四邊形A1B1C1D1全等的有_____個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的兩個實數根,現給出三個結論:①x1≠x2;②x1x2<ab;③
+
<a2+b2.則正確結論的序號是______.(填上你認為正確的所有序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(0,2),B(2,2),C(-1,-2),拋物線F:y=x2-2mx+m2-2與直線x=-2交于點P.
(1)當拋物線F經過點C時,求它的解析式;
(2)設點P的縱坐標為yP,求yP的最小值,此時拋物線F上有兩點(x1,y1),(x2,y2),且x1<x2≤-2,比較y1與y2的大小.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com