【題目】如圖,在直角坐標(biāo)系中,正方形ABCD繞點(diǎn)A(0,6)旋轉(zhuǎn),當(dāng)點(diǎn)B落在x軸上時(shí),點(diǎn)C剛好落在反比例函數(shù)
(k≠0,x>0)的圖像上.已知sin∠OAB=
.
(1)求反比例函數(shù)的表達(dá)式;
(2)反比例函數(shù)
的圖像是否經(jīng)過AD邊的中點(diǎn),并說明理由.
![]()
【答案】(1)
;(2) 不經(jīng)過AD邊的中點(diǎn),理由見解析;
【解析】
(1)過C點(diǎn)作CE⊥x軸于E,如圖,利用正弦的定義得到sin∠OAB=
,設(shè)OB=
,則AB=5
,利用勾股定理即可求得
,接著證明△AOB≌△BEC得到AO=BE,OB=CE,從而得到C的坐標(biāo),然后利用待定系數(shù)法求反比例函數(shù)解析式;
(2)利用平移的方法確定D點(diǎn)坐標(biāo),再利用線段中點(diǎn)坐標(biāo)公式得到線段AD的中點(diǎn)坐標(biāo),然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征判斷反比例函數(shù)
的圖象是否經(jīng)過AD邊的中點(diǎn).
(1)過C點(diǎn)作CE⊥x軸于E,如圖,
![]()
∵A(0,6),
∴OA=6,
在Rt△OAB中,sin∠OAB=
,
設(shè)OB=
,則AB=5
,
∴OA=
,
∴
,
解得:
,即OB=
,
∴點(diǎn)B的坐標(biāo)為(3,0),
∵四邊形ABCD為正方形,
∴BA=BC,∠ABC=90°,
∴∠ABO+∠CBE=90°,
而∠ABO+∠OAB=90°,
∴∠OAB=∠CBE,
∵∠AOB=∠BEC,∠OAB=∠CBE=90°,AB=BC,
∴△AOB≌△BEC(AAS),
∴AO=BE=6,OB=CE=3,
∴點(diǎn)C的坐標(biāo)為(9,3),
∵點(diǎn)C在反比例函數(shù)
的圖象上,
∴
,
∴反比例函數(shù)的表達(dá)式為
;
(2)反比例函數(shù)
的圖象不經(jīng)過AD邊的中點(diǎn).
理由如下:
∵點(diǎn)B向左平移3個(gè)單位,再向上平移6個(gè)單位得到A點(diǎn),
∴點(diǎn)C向左平移3個(gè)單位,再向上平移6個(gè)單位得到D點(diǎn),
∴D點(diǎn)坐標(biāo)為(6,9),
∴線段AD的中點(diǎn)坐標(biāo)為(
,
),即(3,3.5),
∵當(dāng)x=3時(shí),
,
∴反比例函數(shù)圖像不經(jīng)過AD邊的中點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一種升降熨燙臺如圖1所示,其原理是通過改變兩根支撐桿夾角的度數(shù)來調(diào)整熨燙臺的高度.圖2是這種升降熨燙臺的平面示意圖.AB和CD是兩根相同長度的活動(dòng)支撐桿,點(diǎn)O是它們的連接點(diǎn),OA=OC,h(cm)表示熨燙臺的高度.
(1)如圖2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;
(2)愛動(dòng)腦筋的小明發(fā)現(xiàn),當(dāng)家里這種升降熨燙臺的高度為120cm時(shí),兩根支撐桿的夾角∠AOC是74°(如圖2﹣2).求該熨燙臺支撐桿AB的長度(結(jié)果精確到lcm).
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓桌正上方的燈泡O發(fā)出的光線照射桌面后,在地面上形成圓形陰影.已知桌面的直徑為1.2m,桌面距離地面1m,若燈泡O距離地面3m,則地面上陰影部分的面積為( )
![]()
A.0.36πm2B.0.81πm2C.1.44πm2D.3.24πm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面立角坐標(biāo)系中,反比例函數(shù)y=
(k≠0,x<0)與一次函數(shù)y=ax+b的圖象交于點(diǎn)A(﹣3,1)、B(m,3).點(diǎn)C的坐標(biāo)為(1,0),連接AC,BC.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)當(dāng)x<0時(shí),直接寫出不等式
≥ax+b的解集 ;
(3)若點(diǎn)M為y軸的正半軸上的動(dòng)點(diǎn),當(dāng)△ACM是直角三角形時(shí),直接寫出點(diǎn)M的坐標(biāo) .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,點(diǎn)
,點(diǎn)
在
軸正半軸上,以
為一邊作等腰直角
,使得點(diǎn)
在第一象限.
![]()
(1)求出所有符合題意的點(diǎn)
的坐標(biāo);
(2)在
內(nèi)部存在一點(diǎn)
,使得
之和最小,請求出這個(gè)和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,點(diǎn)
的橫、縱坐標(biāo)的絕對值之和叫做點(diǎn)
的勾股值,記![]()
.若拋物線
與直線
只有一個(gè)交點(diǎn)
,已知點(diǎn)
在第一象限,且
,令
,則
的取值范圍為( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(方法回顧)
課本研究三角形中位線性質(zhì)的方法
已知:如圖①, 已知
中,
,
分別是
,
兩邊中點(diǎn).
求證:
,![]()
證明:延長
至點(diǎn)
,使
, 連按
.可證:
( )
由此得到四邊形
為平行四邊形, 進(jìn)而得到求證結(jié)論
(1)請根據(jù)以上證明過程,解答下列兩個(gè)問題:
①在圖①中作出證明中所描述的輔助線(請用
鉛筆作輔助線);
②在證明的括號中填寫理由(請?jiān)?/span>
,
,
,
中選擇) .
(問題拓展)
(2)如圖②,在等邊
中, 點(diǎn)
是射線
上一動(dòng)點(diǎn)(點(diǎn)
在點(diǎn)
的右側(cè)),把線段
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)
得到線段
,點(diǎn)
是線段
的中點(diǎn),連接
、
.
①請你判斷線段
與
的數(shù)量關(guān)系,并給出證明;
②若
,求線段
長度的最小值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)
的圖像與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.
(1)求線段BC的長;
(2)當(dāng)0≤y≤3時(shí),請直接寫出x的范圍;
(3)點(diǎn)P是拋物線上位于第一象限的一個(gè)動(dòng)點(diǎn),連接CP,當(dāng)∠BCP=90o時(shí),求點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:兩個(gè)相似等腰三角形,如果它們的底角有一個(gè)公共的頂點(diǎn),那么把這兩個(gè)三角形稱為“關(guān)聯(lián)等腰三角形”.如圖,在
與
中,
,且
所以稱
與
為“關(guān)聯(lián)等腰三角形”,設(shè)它們的頂角為
,連接
,則稱
會為“關(guān)聯(lián)比".
下面是小穎探究“關(guān)聯(lián)比”與α之間的關(guān)系的思維過程,請閱讀后,解答下列問題:
[特例感知]
當(dāng)
與
為“關(guān)聯(lián)等腰三角形”,且
時(shí),
①在圖1中,若點(diǎn)
落在
上,則“關(guān)聯(lián)比”
=
![]()
②在圖2中,探究
與
的關(guān)系,并求出“關(guān)聯(lián)比”
的值.
![]()
[類比探究]
如圖3,
①當(dāng)
與
為“關(guān)聯(lián)等腰三角形”,且
時(shí),“關(guān)聯(lián)比”
=
②猜想:當(dāng)
與
為“關(guān)聯(lián)等腰三角形”,且
時(shí),“關(guān)聯(lián)比”
= (直接寫出結(jié)果,用含
的式子表示)
[遷移運(yùn)用]
如圖4,
與
為“關(guān)聯(lián)等腰三角形”.若
點(diǎn)
為
邊上一點(diǎn),且
,點(diǎn)
為
上一動(dòng)點(diǎn),求點(diǎn)
自點(diǎn)
運(yùn)動(dòng)至點(diǎn)
時(shí),點(diǎn)
所經(jīng)過的路徑長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com