【題目】如圖,在梯形ABCD中,AD∥BC
,點E是邊AD的中點,連接BE交AC于F,BE的延長線交CD的延長線于G.
(1)求證:
;
(2)若GE=2,BF=3,求線段EF的長.
![]()
【答案】(1)見解析(2)1.
【解析】
(1)由于AD∥BC,易證得△GED∽△GBC;得GE:GB=DE:BC;已知AE=DE,代換相等線段后即可得出本題要證的結論;
(2)按照(1)的方法,可由AE∥BC,得出AE:BC=EF:FB,再聯立(1)得出的比例關系式,可列出關于EF的方程,即可求得EF的長.
解:(1)證明:
∵AD∥BC,
∠GED=∠GBC,
∠G=∠G,
∴△GED∽△GBC,
GE:GB=DE:BC,
∵AE=DE,
∴EG:GB=AE:BC;
(2)∵AD∥BC,
∴△AEF∽△CBF,
AE:BC=EF:BF,
由(1)問EG:GB=AE:BC,
∴EG:GB=EF:BF,
設EF=x,
∵GE=2,BF=3,
∴x:3=2:(5+x),
x1=1,x2=-6(不合題意,舍去)
∴EF=1.
科目:初中數學 來源: 題型:
【題目】如圖,點O是等邊△ABC內一點,D是△ABC外的一點,∠AOB=130°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,連接OD.
(1)求證:△OCD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當α為多少度時,△AOD是等腰三角形.(直接寫出答案)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點,與y軸相交于點C(0,﹣3).
(1)求這個二次函數的表達式;
(2)若P是第四象限內這個二次函數的圖象上任意一點,PH⊥x軸于點H,與BC交于點M,連接PC.
①求線段PM的最大值;
②當△PCM是以PM為一腰的等腰三角形時,求點P的坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某開發區有一塊四邊形的空地ABCD,現計劃在空地上種植草皮,經測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,則要投入_____元.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在
中,內角
與外角
的平分線相交于點
,
,
交
于
,交
于
,連接
、
,下列結論:①
;②
;③
垂直平分
;④
.其中正確的是( )
![]()
A. ①②④B. ①③④C. ②③④D. ①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某機械租賃公司有同一型號的機械設備40套,經過一段時間的經營發現:當每套機械設備的月租金為270元時,恰好全部租出,在此基礎上,當每套設備的月租金提高10元時,這種設備就少租一套,且未租出一套設備每月需要支出費用(維護費、管理費等)20元.
(1)設每套設備的月租金為
(元),用含
的代數式表示未租出的設備數(套)以及所有未租出設備(套)的支出費用;
(2)租賃公司的月收益能否達到11040元?此時應該出租多少套機械設備?每套月租金是多少元?請簡要說明理由;
(3)租賃公司的月收益能否在11040元基礎上再提高?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉得到△ADE,聯結BD與CE交于點F,BD交AE于點G.
![]()
(1)求證:△AEC≌△ADB ;
(2)若AB=2,∠ACB=67.5°,AC∥DF ,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,二次函數y=﹣
+bx+c的圖象經過點A(1,0),且當x=0和x=5時所對應的函數值相等.一次函數y=﹣x+3與二次函數y=﹣
+bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數y=﹣
+bx+c的表達式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結論.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com