【題目】如圖,已知二次函數
的圖象與
軸分別交于
、
兩點,與
軸交于
點,
.則由拋物線的特征寫出如下結論:①
;②
;③
;④
.其中正確的個數是()
![]()
A. 4個B. 3個C. 2個D. 1個
科目:初中數學 來源: 題型:
【題目】5月13日,周杰倫2017“地表最強”世界巡回演唱會在奧體中心盛大舉行,1號巡邏員從舞臺走往看臺,2號巡邏號從看臺走往舞臺,兩人同時出發,分別以各自的速度在舞臺與看臺間勻速走動,出發1分鐘后,1號巡邏員發現對講機遺忘在出發地,便立即返回出發地,拿到對講機后(取對講機時間不計)立即再從舞臺走往看臺,結果1號巡邏員先到達看臺,2號巡邏員繼續走到舞臺,設2號巡邏員的行駛時間為x(min),兩人之間的距離為y(m),y與x的函數圖象如圖所示,則當1號巡邏員到達看臺時,2號巡邏員離舞臺的距離是________米.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=x2+bx+c的對稱軸為直線x=1,且經過點(﹣1,0).若關于x的一元二次方程x2+bx+c﹣t=0(t為實數)在﹣1<x<4的范圍內有實數根,則t的取值范圍是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,Rt△ABC中,∠ABC=90°,P是斜邊AC上一個動點,以BP為直徑作⊙O交BC于點D,與AC的另一個交點為E(點E在點P右側),連結DE、BE,已知AB=3,BC=6.
(1)求線段BE的長;
(2)如圖2,若BP平分∠ABC,求∠BDE的正切值;
(3)是否存在點P,使得△BDE是等腰三角形,若存在,求出所有符合條件的CP的長;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=
,點M為AB的中點,點N為AD邊上的一動點,將△AMN沿MN折疊,點A落在點P處,當點P在矩形ABCD的對角線上時,AN的長度為_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+3經過點A(1,0)和點B(﹣3,0),與y軸交于點C,點P為第二象限內拋物線上的動點.
(1)拋物線的解析式為 ,拋物線的頂點坐標為 ;
(2)如圖1,連接OP交BC于點D,當S△CPD:S△BPD=1:2時,請求出點D的坐標;
(3)如圖2,點E的坐標為(0,﹣1),點G為x軸負半軸上的一點,∠OGE=15°,連接PE,若∠PEG=2∠OGE,請求出點P的坐標;
(4)如圖3,是否存在點P,使四邊形BOCP的面積為8?若存在,請求出點P的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=x2﹣2mx+m2﹣1與y軸交于點C.
(1)試用含m的代數式表示拋物線的頂點坐標;
(2)將拋物線y=x2﹣2mx+m2﹣1沿直線y=﹣1翻折,得到的新拋物線與y軸交于點D.若m>0,CD=8,求m的值;
(3)已知A(2k,0),B(0,k),在(2)的條件下,當線段AB與拋物線y=x2﹣2mx+m2﹣1只有一個公共點時,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)不在原圖添加字母和線段,對△ABC只加一個條件使得四邊形AFBD是菱形,寫出添加條件并說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國的《洛書》中記載著世界上最古老幻方:將1-9這九個數字填入3×3的方格內,使三行、三列、兩對角線上的三個數之和都相等.如圖的幻方中字母m所能表示的所有數中最大的數是( )
![]()
A.6B.7C.8D.9
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com