【題目】如圖,在矩形ABCD中,
,
,把△EAD沿AE折疊,使點(diǎn)D恰好落在AB邊上的
處,再將
繞點(diǎn)E順時(shí)針旋轉(zhuǎn)
,得到
,使得
恰好經(jīng)過
的中點(diǎn)F.
交AB于點(diǎn)G,連接
有如下結(jié)論:①
的長度是
;②弧
的長度是
;③
;④
.上述結(jié)論中,所有正確的序號是________.
![]()
【答案】①②④
【解析】
①先根據(jù)圖形翻折變換的性質(zhì)以及勾股定理得出![]()
的長,再根據(jù)勾股定理求出EF的長,即可求解;
②利用特殊角的三角函數(shù)求得
,從而求得
,根據(jù)弧長公式即可求解;
③由于
不是等邊三角形,得出
,從而說明
和
不是全等三角形;
④先利用“HL”證得![]()
![]()
,求得
,再求得
,從而推出
.
①在矩形ABCD中,
,
∵△ADE翻折后與△AD′E重合,
∴AD′=AD,D′E=DE,
,
∴四邊形ADED′是正方形,
∴AD′=AD=D′E=DE=
,
∴AE=
,
將
繞點(diǎn)E順時(shí)針旋轉(zhuǎn)
,得到
,
∴![]()
![]()
,
=
=
,
,
∵點(diǎn)F是
的中點(diǎn),
∴
,
∴
,
∴
,故①正確;
②由①得
,
在
中,
,
,
∴
,
∴
,
∴弧
的長度是
,故②正確;
③在
中,
,
,
∴
不是等邊三角形,
∴
,
∴
和
不是全等三角形,故③錯(cuò)誤;
④在
和
中,
,
公共,
∴![]()
![]()
(HL),
∴
,
∴
,
在
中,
,
,
∴
,
∴
,
又
,
∴
,故④正確;
綜上,①②④正確,
故答案為:①②④.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對中國民族樂器的喜愛情況,隨機(jī)抽取了本校的部分學(xué)生進(jìn)行調(diào)查(每名學(xué)生選擇并且只能選擇一種喜愛的樂器),現(xiàn)將收集到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)這次共抽取 學(xué)生調(diào)查,扇形統(tǒng)計(jì)圖中的x= ;
(2)請補(bǔ)全統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中“揚(yáng)琴”所對扇形的圓心角是多少度;
(4)若該校有3000名學(xué)生,請你估計(jì)該校喜愛“二胡”的學(xué)生約有多少名.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺按圖1擺放,等腰直角三角尺的直角邊DF恰好垂直平分AB,與AC相交于點(diǎn)G,
.
(1)求GC的長;
(2)如圖2,將△DEF繞點(diǎn)D順時(shí)針旋轉(zhuǎn),使直角邊DF經(jīng)過點(diǎn)C,另一直角邊DE與AC相交于點(diǎn)H,分別過H、C作AB的垂線,垂足分別為M、N,通過觀察,猜想MD與ND的數(shù)量關(guān)系,并驗(yàn)證你的猜想.
(3)在(2)的條件下,將△DEF沿DB方向平移得到△D′E′F′,當(dāng)D′E′恰好經(jīng)過(1)中的點(diǎn)G時(shí),請直接寫出DD′的長度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)O在AB上,經(jīng)過點(diǎn)A的⊙O與BC相切于點(diǎn)D,交AB于點(diǎn)E,若CD=
,則圖中陰影部分面積為( )
![]()
A.4﹣
B.2﹣
C.2﹣πD.1﹣![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(1,0),連結(jié)AB,以AB為邊在第一象限內(nèi)作正方形ABCD,直線BD交雙曲線y═
(k≠0)于D、E兩點(diǎn),連結(jié)CE,交x軸于點(diǎn)F.
![]()
(1)求雙曲線y=
(k≠0)和直線DE的解析式.
(2)求
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是
,在x軸上任取一點(diǎn)M.連接AM,分別以點(diǎn)A和點(diǎn)M為圓心,大于
的長為半徑作弧,兩弧相交于G,H兩點(diǎn),作直線GH,過點(diǎn)M作x軸的垂線l交直線GH于點(diǎn)P.根據(jù)以上操作,完成下列問題.
探究:
(1)線段PA與PM的數(shù)量關(guān)系為________,其理由為:________________.
(2)在x軸上多次改變點(diǎn)M的位置,按上述作圖方法得到相應(yīng)點(diǎn)P的坐標(biāo),并完成下列表格:
M的坐標(biāo) | … |
|
|
|
| … |
P的坐標(biāo) | … |
|
| … |
猜想:
(3)請根據(jù)上述表格中P點(diǎn)的坐標(biāo),把這些點(diǎn)用平滑的曲線在圖2中連接起來;觀察畫出的曲線L,猜想曲線L的形狀是________.
驗(yàn)證:
(4)設(shè)點(diǎn)P的坐標(biāo)是
,根據(jù)圖1中線段PA與PM的關(guān)系,求出y關(guān)于x的函數(shù)解析式.
應(yīng)用:
(5)如圖3,點(diǎn)
,
,求點(diǎn)D的縱坐標(biāo)
的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形
中,
,
,點(diǎn)
為邊
上的一點(diǎn)(與
、
不重合)四邊形
關(guān)于直線
的對稱圖形為四邊形
,延長
交
與點(diǎn)
,記四邊形
的面積為
.
![]()
(1)若
,求
的值;
(2)設(shè)
,求
關(guān)于
的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,把與
軸交點(diǎn)相同的二次函數(shù)圖像稱為“共根拋物線”.如圖,拋物線
的頂點(diǎn)為
,交
軸于點(diǎn)
、
(點(diǎn)
在點(diǎn)
左側(cè)),交
軸于點(diǎn)
.拋物線
與
是“共根拋物線”,其頂點(diǎn)為
.
![]()
(1)若拋物線
經(jīng)過點(diǎn)
,求
對應(yīng)的函數(shù)表達(dá)式;
(2)當(dāng)
的值最大時(shí),求點(diǎn)
的坐標(biāo);
(3)設(shè)點(diǎn)
是拋物線
上的一個(gè)動點(diǎn),且位于其對稱軸的右側(cè).若
與
相似,求其“共根拋物線”
的頂點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張去文具店購買作業(yè)本,作業(yè)本有大、小兩種規(guī)格,大本作業(yè)本的單價(jià)比小本作業(yè)本貴0.3元,已知用8元購買大本作業(yè)本的數(shù)量與用5元購買小本作業(yè)本的數(shù)量相同.
(1)求大本作業(yè)本與小本作業(yè)本每本各多少元?
(2)因作業(yè)需要,小張要再購買一些作業(yè)本,購買小本作業(yè)本的數(shù)量是大本作業(yè)本數(shù)量的2倍,總費(fèi)用不超過15元.則大本作業(yè)本最多能購買多少本?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com