【題目】如圖,已知直線
與
軸,
軸分別交于點(diǎn)
,
,與直線
交于點(diǎn)
.點(diǎn)
從點(diǎn)
出發(fā)以每秒1個(gè)單位的速度向點(diǎn)
運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間設(shè)為
秒.
![]()
(1)求點(diǎn)
的坐標(biāo);
(2)求下列情形
的值;
①連結(jié)
,
把
的面積平分;
②連結(jié)
,若
為直角三角形.
【答案】(1)點(diǎn)C的坐標(biāo)為
;(2)①t的值為2;②t的值為
或
.
【解析】
(1)聯(lián)立兩條直線的解析式求解即可;
(2)①根據(jù)三角形的面積公式可得,當(dāng)BP把
的面積平分時(shí),點(diǎn)P處于OA的中點(diǎn)位置,由此即可得出t的值;
②先由點(diǎn)C的坐標(biāo)可求出
,再分
和
兩種情況,然后利用等腰直角三角形的性質(zhì)求解即可.
(1)由題意,聯(lián)立兩條直線的解析式得![]()
解得![]()
故點(diǎn)C的坐標(biāo)為
;
(2)①直線
,令
得
,解得![]()
則點(diǎn)A的坐標(biāo)為
,即![]()
當(dāng)點(diǎn)P從點(diǎn)O向點(diǎn)A運(yùn)動(dòng)時(shí),t的最大值為![]()
BP將
分成
和
兩個(gè)三角形
由題意得
,即![]()
則
,即此時(shí),點(diǎn)P為OA的中點(diǎn)
![]()
,符合題意
故t的值為2;
②由(1)點(diǎn)C坐標(biāo)可得![]()
若
為直角三角形,有以下2中情況:
當(dāng)
時(shí),
為等腰直角三角形,且![]()
由點(diǎn)C坐標(biāo)可知,此時(shí)
,則![]()
故
,且
,符合題意
當(dāng)
時(shí),
為等腰直角三角形,且![]()
由勾股定理得![]()
故
,且
,符合題意
綜上,t的值為
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),如果∠APB繞點(diǎn)P旋轉(zhuǎn)時(shí)始終滿足OAOB=OP2,我們就把∠APB叫做∠MON的智慧角.
(1)如圖2,已知∠MON=90°,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),且∠APB=135°.求證:∠APB是∠MON的智慧角.
(2)如圖1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,連結(jié)AB,用含α的式子表示∠APB的度數(shù).
(3)如圖3,C是函數(shù)
圖象上的一個(gè)動(dòng)點(diǎn),過(guò)C的直線CD分別交x軸和y軸于A,B兩點(diǎn),且滿足BC=2CA,請(qǐng)求出∠AOB的智慧角∠APB的頂點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B (1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式;
(2)連接AC、BC,判斷△ABC的形狀,并證明;
(3)若點(diǎn)P為二次函數(shù)對(duì)稱軸上點(diǎn),求出使△PBC周長(zhǎng)最小時(shí),點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示,
(1)先畫(huà)出△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1,再畫(huà)出△A1B1C1關(guān)于y軸對(duì)稱的圖形△A2B2C2;
(2)直接寫出△A2B2C2各頂點(diǎn)的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是反比例函數(shù)
上第一象限上一個(gè)動(dòng)點(diǎn),點(diǎn)A、點(diǎn)B為坐標(biāo)軸上的點(diǎn),A(0,k),B(k,0).已知△OAB的面積為
.
![]()
(1)求k的值;
(2)連接PA、PB、AB,設(shè)△PAB的面積為S,點(diǎn)P的橫坐標(biāo)為t.請(qǐng)直接寫出S與t的函數(shù)關(guān)系式;
(3)閱讀下面的材料回答問(wèn)題:
當(dāng)a>0時(shí),![]()
∵
≥0,∴
≥2,即
≥2
由此可知:當(dāng)
=0時(shí),即a=1時(shí),
取得最小值2.
問(wèn)題:請(qǐng)你根據(jù)上述材料探索(2)中△PAB的面積S有沒(méi)有最小值?若有,請(qǐng)直接寫出S的最小值;若沒(méi)有,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是
的直徑,
是
上的一點(diǎn),過(guò)點(diǎn)
作
于點(diǎn)
,交
于點(diǎn)
,且
=
.
![]()
求證:
是
的切線;
若
,
,求
的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC的內(nèi)角平分線與外角平分線分別交BC及BC的延長(zhǎng)線于點(diǎn)P、Q.
(1)求∠PAQ的大小;
(2)若點(diǎn)M為PQ的中點(diǎn),求證:PM2=CM·BM.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com