【題目】已知,如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,動點P在線段BC上以每秒2個單位長的速度由點C向B 運動.設 動點P的運動時間為t秒
(1)當t為何值時,四邊形PODB是平行四邊形?
(2)在直線CB上是否存在一點Q,使得O、D、Q、P四點為頂點的四邊形是菱形?若存在,求t的值,并求出Q點的坐標;若不存在,請說明理由。
(3) 在線段PB上有一點M,且PM=5,當P運動 秒時,四邊形OAMP的周長最小, 并畫圖標出點M的位置。
![]()
【答案】(1)t=2.5;(2)t=4 Q(3,4);t=1 Q(-3,4)(3)t=
【解析】(1)根據平行四邊形的性質就可以知道PB=5,可以求出PC=5,從而可以求出t的值;(2)要使ODQP為菱形,可以得出PO=5,由三角形的勾股定理就可以求出CP的值而求出t的值;(3)根據題意即可填得t的值.
解: (1)∵四邊形PODB是平行四邊形,
∴PB=OD=5,
∴PC=5,
∴2t=5,t=2.5;
(2)當Q點在P的右邊時
∵四邊形ODQP為菱形,
∴OD=OP=PQ=5,
∴在Rt△OPC中,由勾股定理得:
PC=3,
∴2t=3;t=1.5 Q(8,4).
當Q點在P的左邊且在BC線段上時,t=4, Q(3,4);
當Q點在P的左邊且在BC的延長線上時,t=1,Q(-3,4) .
(3)t=
.
“點睛”本題考查了平行四邊形的判定及性質,菱形的性質,勾股定理的運用,解題時要運用分類討論的思想.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線
與x軸的負半軸交于點A,與y軸交于點B,連結AB.點C
在拋物線上,直線AC與y軸交于點D.![]()
(1)求c的值及直線AC的函數表達式;
(2)點P在x軸的正半軸上,點Q在y軸正半軸上,連結PQ與直線AC交于點M,連結MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設點M的橫坐標為m , 求AN的長(用含m的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:
請你根據上圖填寫下表:
銷售公司 | 平均數 | 方差 | 中位數 | 眾數 |
甲 |
| 9 | ||
乙 | 9 |
| 8 |
請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析:
從平均數和方差結合看;
從折線圖上甲、乙兩個汽車銷售公司銷售數量的趨勢看
分析哪個汽車銷售公司較有潛力
.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,△EFG均是邊長為4的等邊三角形,點D是邊BC、EF的中點. (Ⅰ)如圖①,這兩個等邊三角形的高為;
(Ⅱ)如圖②,直線AG,FC相交于點M,當△EFG繞點D旋轉時,線段BM長的最小值是 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把下列各數填在相應的括號內
, -
, 0,
,‐3.1415926, 20%, ‐3
, 2, -1,3.1010010001…(每兩個1之間逐次增加1個0)
①正數集合{ ……}
②負數集合{ ……}
③整數集合{ ……}
④負分數集合{ ……}
⑤無理數集合{ ……}
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點E、F同時由A、C兩點出發,分別沿AB、CB方向向點B勻速移動(到點B為止),點E的速度為1cm/s,點F的速度為2cm/s,經過t秒△DEF為等邊三角形,則t的值為 .
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=
(x>0)的圖象經過矩形OABC對角線的交點M,分別與AB、BC相交于點D、E.若四邊形ODBE的面積為6,則k的值為 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學實驗室:
點A、B在數軸上分別表示有理數a、b,A、B兩點之間的距離表示為AB,在數軸上A、B兩點之間的距離AB=|a﹣b|.
利用數形結合思想回答下列問題:
(1)數軸上表示2和5的兩點之間的距離是_________,數軸上表示1和-3的兩點之間的距離是 ;
(2)數軸上若點A表示的數是x,點B表示的數是-2,則點A和B之間的距離是 ,若AB=2,那么x為 ;
(3)當x是 時,代數式
;
(4)若點A表示的數-1,點B與點A的距離是10,且點B在點A的右側,動點P、Q同時從A、B出發沿數軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒1個單位長度,求運動幾秒后,PQ=1?(請寫出必要的求解過程)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com