【題目】從化市某中學初三(1)班數學興趣小組為了解全校800名初三學生的“初中畢業選擇升學和就業”情況,特對本班50名同學們進行調查,根據全班同學提出的3個主要觀點:A高中,B中技,C就業,進行了調查(要求每位同學只選自己最認可的一項觀點);并制成了扇形統計圖(如圖).請回答以下問題:
(1)該班學生選擇 觀點的人數最多,共有 人,在扇形統計圖中,該觀點所在扇形區域的圓心角是 度.
(2)利用樣本估計該校初三學生選擇“中技”觀點的人數.
(3)已知該班只有2位女同學選擇“就業”觀點,如果班主任從該觀點中,隨機選取2位同學進行調查,那么恰好選到這2位女同學的概率是多少?(用樹形圖或列表法分析解答).
![]()
【答案】(1)A高中觀點.30. 216;(2)256人;(3)
.
【解析】
試題(1)全班人數乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”觀點的人數,用360°乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”的觀點所在扇形區域的圓心角的度數;
(2)用全校初三年級學生數乘以選擇“B中技”觀點的百分比即可估計該校初三學生選擇“中技”觀點的人數;
(3)先計算出該班選擇“就業”觀點的人數為4人,則可判斷有2位女同學和2位男生選擇“就業”觀點,再列表展示12種等可能的結果數,找出出現2女的結果數,然后根據概率公式求解.
試題解析:(1)該班學生選擇A高中觀點的人數最多,共有60%×50=30(人),在扇形統計圖中,該觀點所在扇形區域的圓心角是60%×360°=216°;
(2)∵800×32%=256(人),
∴估計該校初三學生選擇“中技”觀點的人數約是256人;
(3)該班選擇“就業”觀點的人數=50×(1-60%-32%)=50×8%=4(人),則該班有2位女同學和2位男生選擇“就業”觀點,
列表如下:
![]()
共有12種等可能的結果數,其中出現2女的情況共有2種.
所以恰好選到2位女同學的概率=
.
科目:初中數學 來源: 題型:
【題目】體育課上,老師為了解女學生定點投籃的情況,隨機抽取8名女生進行每人4次定點投籃的測試,進球數的統計如圖所示.
![]()
(1)求女生進球數的平均數、中位數;
(2)投球4次,進球3個以上(含3個)為優秀,全校有女生1200人,估計為“優秀”等級的女生約為多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2+bx+c的圖象經過點(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數圖象的頂點坐標和對稱軸,并在所給坐標系中畫出該函數的圖象;
(3)該函數的圖象經過怎樣的平移得到y=x2的圖象?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點P從B出發沿BA向A運動,速度為每秒1cm,點E是點B以P為對稱中心的對稱點,點P運動的同時,點Q從A出發沿AC向C運動,速度為每秒2cm,當點Q到達頂點C時,P,Q同時停止運動,設P,Q兩點運動時間為t秒.
(1)當t為何值時,PQ∥BC?
(2)設四邊形PQCB的面積為y,求y關于t的函數關系式;
(3)四邊形PQCB面積能否是△ABC面積的
?若能,求出此時t的值;若不能,請說明理由;
(4)當t為何值時,△AEQ為等腰三角形?(直接寫出結果)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了“創建文明城市,建設美麗家園”,我市某社區將轄區內的一塊面積為1000m2的空地進行綠化,一部分種草,剩余部分栽花,設種草部分的面積為
(m2),種草所需費用
1(元)與
(m2)的函數關系式為
,其圖象如圖所示:栽花所需費用
2(元)與x(m2)的函數關系式為
2=﹣0.01
2﹣20
+30000(0≤
≤1000).
![]()
(1)請直接寫出k1、k2和b的值;
(2)設這塊1000m2空地的綠化總費用為W(元),請利用W與
的函數關系式,求出綠化總費用W的最大值;
(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請求出綠化總費用W的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現需降價處理,且經市場調查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數關系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,以點4為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于
BF的長為半徑畫弧,兩弧交于點P;連接AP并廷長交BC于點E,連接EF
(1)根據以上尺規作圖的過程,求證:四邊形ABEF是菱形;
(2)若AB=2,AE=2
,求∠BAD的大。
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(9分)已知:
ABCD的兩邊AB,AD的長是關于x的方程
的兩個實數根.
(1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么
ABCD的周長是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發,點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2 cm/s的速度向D移動.
(1)P、Q兩點從出發開始到幾秒?四邊形PBCQ的面積為33cm2;
(2)P、Q兩點從出發開始到幾秒時?點P和點Q的距離是10cm.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com